Terrestrial-marine linkages in Puget Sound: trophic subsidies and oceanographic transport of freshwater, nutrients and pathogens to shellfish beds

Letitia (Tish) Conway-Cranos¹, Peter Kiffney², Neil Banas³, Mark Plummer², Sean Naman¹, Krista Bartz², Mary Ruckelshaus⁴, Rohinee Paranjpye², Mark Strom², Parker MacCready³, John Bucci⁵

¹Frank Orth and Associates, ² Northwest Fisheries Science Center, ³Unversity of Washington, ⁴ The Natural Capital Project, ⁵ University of New Hampshire

Shellfish: major components of nearshore ecosystem in Puget Sound

- Important ecologically
 - Link between primary producers and higher trophic levels
 - Filter feeders → Ecosystem service
 - Reef-forming → Provision of hard substrate
- Important economically
- Puget Sound Partnership recovery indicator

Diet, nutrients, and pathogens

Terrestrial

Diet, nutrients, and pathogens

Terrestrial

Diet, nutrients, and pathogens

Terrestrial

- Terrestrial detritus
- Freshwater phytoplankton
- Nutrients
- Sediment transport
- Pathogens → Fecal coliforms
 - Limits harvest opportunities, associated with rain

Diet, nutrients, and pathogens

Terrestrial

- Terrestrial detritus
- Freshwater phytoplankton
- Nutrients
- Sediment transport
- Pathogens → Fecal coliforms
 - Limits harvest opportunities, associated with rain

Diet, nutrients, and pathogens

Terrestrial

- Terrestrial detritus
- Freshwater phytoplankton
- Nutrients
- Sediment transport
- Pathogens → Fecal coliforms
 - Limits harvest opportunities, associated with rain

Diet, nutrients, and pathogens

Terrestrial

- Terrestrial detritus
- Freshwater phytoplankton
- Nutrients
- Sediment transport
- Pathogens → Fecal coliforms
 - Limits harvest opportunities, associated with rain

- Phytoplankton
- Seaweeds and eelgrass
- Nutrients
- Pathogens → Vibrio
 - Limits harvest opportunities, occurs in summer months

Diet, nutrients, and pathogens

Terrestrial

- Terrestrial detritus
- Freshwater phytoplankton
- Nutrients
- Sediment transport
- Pathogens → Fecal coliforms
 - Limits harvest opportunities, associated with rain

- Phytoplankton
- Seaweeds and eelgrass
- Nutrients
- Pathogens → Vibrio
 - Limits harvest opportunities, occurs in summer months

Diet, nutrients, and pathogens

Terrestrial

- Terrestrial detritus
- Freshwater phytoplankton
- Nutrients
- Sediment transport
- Pathogens → Fecal coliforms
 - Limits harvest opportunities, associated with rain

- Phytoplankton
- Seaweeds and eelgrass
- Nutrients
- Pathogens → Vibrio
 - Limits harvest opportunities, occurs in summer months

The relative importance of freshwater and marine inputs will be influenced by:

- Quantity and timing of freshwater delivery
- Land use/ Riparian vegetation
- Oceanographic inputs and transport
- Climate change

- I. Transport of freshwater and marine inputs to shellfish beds under alternative climate and land use scenarios
- II. Relative importance of marine and terrestrial inputs to shellfish diets
- III. Sources and magnitudes of terrestrial and marine-derived nutrients and pathogens

- I. Transport of freshwater and marine inputs to shellfish beds under alternative climate and land use scenarios
- II. Relative importance of marine and terrestrial inputs to shellfish diets
- III. Sources and magnitudes of terrestrial and marine-derived nutrients and pathogens

- I. Transport of freshwater and marine inputs to shellfish beds under alternative climate and land use scenarios
- II. Relative importance of marine and terrestrial inputs to shellfish diets
- III. Sources and magnitudes of terrestrial and marine-derived nutrients and pathogens

- I. Transport of freshwater and marine inputs to shellfish beds under alternative climate and land use scenarios
- II. Relative importance of marine and terrestrial inputs to shellfish diets
- III. Sources and magnitudes of terrestrial and marine-derived nutrients and pathogens

- I. Transport of freshwater and marine inputs to shellfish beds under alternative climate and land use scenarios
- II. Relative importance of marine and terrestrial inputs to shellfish diets
- III. Sources and magnitudes of terrestrial and marine-derived nutrients and pathogens

Approach

Three target watersheds

- Each supports significant shellfish harvest
- Variation in land use, watershed and oceanographic characteristics

Approach

Three target watersheds

- Each supports significant shellfish harvest
- Variation in land use, watershed and oceanographic characteristics

Samish Bay

- Lower elevation
- Agriculture

Approach

Three target watersheds

- Each supports significant shellfish harvest
- Variation in land use, watershed and oceanographic characteristics

Samish Bay

- Lower elevation
- Agriculture

Dosewallips River

Hamma Hamma River

- Higher elevation
- Forest/residential

MacCready and Giddings, physics Banas, Davis, and Siedlecki, biochemistry

PS-AHAB Model (N. Banas, UW Applied Physics Lab)

- Implemented using ROMS (Regional Oceanographic Model System)
- Part of MoSSea (Modeling the Salish Sea)

Preliminary results

Preliminary results

- From ~ 5% to ~30% freshwater predicted to be transported to shellfish bed
- Seasonally variable
- Importance of other rivers

Preliminary results

- From ~ 5% to ~30% freshwater predicted to be transported to shellfish bed
- **Seasonally variable**
- Importance of other rivers
- Different seasonal pattern for Hood Canal, higher freshwater input

Preliminary results

- From ~ 5% to ~30% freshwater predicted to be transported to shellfish bed
- Seasonally variable
- Importance of other rivers
- Different seasonal pattern for Hood Canal, higher freshwater input
- Summer freshwater contribution of ~5% to ~20%, more in Hood Canal than Samish Bay

Ongoing work:

- Different concentrations of tracers to represent nutrient and pathogen loads
- Alternative land use and IPCC climate change scenarios
- Role of extreme events

Oyster diets Stable isotope study: Crassostrea gigas

Oyster diets Stable isotope study: *Crassostrea gigas*

Oyster diets Stable isotope study: *Crassostrea gigas*

- Collect oyster tissue, source tissue, particulate matter in oyster beds from June 2011- Jan 2012
- Use mixing model to determine relative contribution of freshwater and marine sources

Results so far: subset of June 2011 samples

Oysters and potential diet items

Samish Bay

Results so far: subset of June 2011 samples

Oysters and potential diet items

Samish Bay

Dosewallips

Hamma Hamma

Proportion contribution to diet

- Wide ranges of benthic diatom and phytoplankton contributions at all three sites
- Largest contribution benthic diatoms
- Smallest contribution of salt marsh plants

Median values of contribution

 Importance of marine sources, combined upland and saltmarsh contribution of ~14% (Samish), 20% (Hood Canal)

- Importance of marine sources, combined upland and saltmarsh contribution of ~14% (Samish), 20% (Hood Canal)
- General agreement with oceanographic model

Stable isotope study: Crassostrea gigas

Ongoing work

- Remainder of oyster and source samples (June, August, November, January)
- Focus on across-site patterns in sources and contributions
- Environmental data from oyster beds (monthly CTD, POM) and river POM
- Use nitrate isotopes to trace sources of nutrients in watersheds

Significance

- Improved understanding of factors influencing shellfish beds and nearshore habitats in Puget Sound
- Potential for regional influence of local shellfish beds
- Oyster diets so far are generally consistent with oceanographic model predictions of freshwater and marine input
- Integration of oceanography, nearshore and watershed ecology, pathology, economics to determine current and future risk of shellfish bed closures

Acknowledgements

Funding: EPA, NWFSC

Site Access: Taylor Shellfish (Bill Dewey, Danny Lomsdalen, John Adams), Gary Webb,

Dosewallips State Park

Boat support: Correigh Greene, Casey Rice, Jason Hall, Jen King, Josh Chamberlin, Bruce

Brown, Alicia Godersky, Janet Aubin and the townet crews

Isotope analysis: Washington State University Stable Isotope Laboratory

GIS and R help: Hiroo Imaki, Eric Ward, Eric Buhle, Bridget Ferris

Field help: Matt Smith

Lab support: Beth Sanderson, Carmella Vizza, Holly Coe, Bill Rice, Allison Myers-Pigg

Helpful discussions: Mike Brett, Jen Ruesink, Chris Harvey, Jameal Samhouri, Emily Howe,

Melissa Foley, Beth Wheat, Julie Horowitz, Teri King, Jodie Toft, Matthew Marsik

