Shading the snowpack: forest management to combat climate change

Collaborators:

Dr. Jessica Lundquist – UW Dr. Jim Lutz - UW Kael Martin – UW Dr. Rolf Gersonde – Seattle Public Utilities

Seattle Public Utilities

Funding:

National Science Foundation

Is forest management a viable climate change mitigation strategy?

Photos (L-R): City of Seattle, Kael Martin, Susan Dickerson

Background: Cedar River Municipal Watershed

Photo: Seattle Public Utilities

Background: Climate Change Effects

Snow

Water Storage

Wiley and Palmer, 2008. Journal of Water Resources Planning and Management

Background: Climate Change Effects

Photo: Gilbert Arias (Seattle Post Intelligencer)

Less Snow & Earlier Melt

Lower Summer Flows Lower Soil Moisture Higher Water Temperatures

Background: Vegetation in the Cedar Watershed

Vegetation and the Hydrologic Cycle

•Evaporation and Transpiration (ET)

•Wind effects

•Sun effects

Rain & Snow interception

•Sediment transport

Trees & Snow: Accumulation & Interception

Trees & Snow: Ablation

Photo: Kael Martin

Trees & Snow: Accumulation vs. Ablation

Jost et al., 2007, Journal of Hydrology

Previous work in British Columbia

Trees & Snow: Manage for Optimal Retention?

Figure: Jessica Lundquist

Trees & Snow: Light Transmittance

Stem Maps

Light at Forest Floor

Hypothesis: Gaps will retain snow later into the summer

Trees & Snow: Observations

Photos at different forest treatments

Measuring snow depth at different sites

Trees & Snow: Measuring Interception

Trees & Snow: Measuring Interception

Trees & Snow: Spatial Scale

The model calculates a water and energy budget on each grid cell for each time step.

How do trees (& the forest) affect accumulation and ablation in the model?

Figures: Pascal Storck (representing the Distributed Hydrology-Soil-Vegetation Model)

Effect of Leaf Area Index (LAI) on snow under different "snow years"

Future Work: LiDAR to Characterize Canopy

<u>Hypothesis</u>: Forest structure more important than species composition.

Thank you!

Susan Dickerson dickers@uw.edu

Daily Canopy SWE, WY 1995-2011

Trees & Snow: Measuring Interception

Climate Change Effects on Streamflow

Nooksack River Whatcom County, WA

CIG, 2010. Columbia Basin Climate Change Scenarios Project